Math Doubts

Zeros or Roots of a Polynomial

A value for which a polynomial becomes zero is called a zero of a polynomial.

Introduction

The polynomial is equal to zero when a particular value is substituted in the polynomial and that particular value is called a zero of the polynomial. It is also called a root of the polynomial.

Let $f(x)$ be a polynomial in variable $x$ and it is equal to zero for $x$ equals to $\alpha$, $\beta$ and $\gamma$.

  1. $f(\alpha) \,=\, 0$
  2. $f(\beta) \,=\, 0$
  3. $f(\gamma) \,=\, 0$

The values of alpha, beta and gamma made the polynomial $f(x)$ to become zero. Hence, $\alpha$, $\beta$ and $\gamma$ are called the zeros or zeroes of the polynomial, and also called the roots of the polynomial.

Example

Let us understand the concept of a root or zero of a polynomial.

$2x^3$ $-$ $3x^2$ $+$ $7x$ $-$ $6$

It is an example polynomial in one variable. Substitute $x \,=\, 1$ and find the value of the polynomial.

$=\,\,\,$ $2(1)^3$ $-$ $3(1)^2$ $+$ $7(1)$ $-$ $6$

$=\,\,\,$ $2 \times (1)^3$ $-$ $3 \times (1)^2$ $+$ $7 \times (1)$ $-$ $6$

$=\,\,\,$ $2 \times 1^3$ $-$ $3 \times 1^2$ $+$ $7 \times 1$ $-$ $6$

$=\,\,\,$ $2 \times 1$ $-$ $3 \times 1$ $+$ $7 \times 1$ $-$ $6$

$=\,\,\,$ $2$ $-$ $3$ $+$ $7$ $-$ $6$

$=\,\,\,$ $2$ $+$ $7$ $-$ $3$ $-$ $6$

$=\,\,\,$ $9$ $-$ $9$

$=\,\,\,$ $0$

The value of the polynomial $2x^3$ $-$ $3x^2$ $+$ $7x$ $-$ $6$ is equal to zero when the value of $x$ equals to $1$. Therefore, the number $1$ is called a root or zero of the polynomial.

Remember that the degree of a polynomial defines the number of roots or zeros of the polynomial. In this example, the degree of the polynomial is $3$. We know that $x \,=\, 1$ is a root. So, it has two more zeroes.

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved