Math Doubts

Limits of Trigonometric functions Questions and solutions

The limits problems involving the trigonometric functions appear in calculus. So, the limits of trigonometric functions worksheet is given here for you and it consists of simple to tough trigonometric limits examples with answers for your practice, and also solutions to learn how to find the limits of trigonometric functions in possible different methods by the trigonometric limits formulas.

$\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\sin{5x}-\sin{3x}}{x}}$

Evaluate $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \Big(\dfrac{\sin{x}}{x}\Big)^{\dfrac{1}{x^2}}}$

Evaluate $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \dfrac{1-\cos{mx}}{1-\cos{nx}}}$

Evaluate $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \dfrac{\log_{\displaystyle e}{\big(\cos{(\sin{x})}\big)}}{x^2}}$

Evaluate $\displaystyle \large \lim_{x\,\to\,\Large \frac{\pi}{4}}{\normalsize \dfrac{\sin{x}-\cos{x}}{x-\dfrac{\pi}{4}}}$

Evaluate $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \dfrac{\sin^3{x}}{\sin{x}-\tan{x}}}$

Evaluate $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \dfrac{\log_{e}{(\cos{x})}}{\sqrt[\Large 4]{1+x^2}-1}}$

Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{e^x-e^{x\cos{x}}}{x+\sin{x}}}$

Evaluate $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \dfrac{1-\cos{(2x)}}{x^2}}$

Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \Big(1+\sin{x}\Big)^{\Large \frac{1}{x}}}$

Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{(e^{-3x+2}-e^2)\sin{\pi x}}{4x^2}}$

Evaluate $\displaystyle \large \lim_{x \,\to\, 2}{\normalsize \dfrac{\cos{\Big(\dfrac{\pi}{x}\Big)}}{x-2}}$

Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{x\tan{2x}-2x\tan{x}}{(1-\cos{2x})^2}}$

Evaluate $\displaystyle \large \lim_{x \,\to\, \frac{\pi}{2}}{\normalsize \dfrac{\cos{x}}{\frac{\pi}{2}-x}}$

Evaluate $\displaystyle \large \lim_{x \,\to\, \pi}{\normalsize \dfrac{\sqrt{2+\cos{x}}-1}{(\pi-x)^2}}$

Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\tan{x}-\sin{x}}{x^3}}$

Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{(1-\cos{2x})(3+\cos{x})}{x\tan{4x}}}$

Evaluate $\displaystyle \large \lim_{x \,\to\, \frac{\pi}{2}}{\normalsize \dfrac{1+\cos{2x}}{(\pi-2x)^2}}$

Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \sqrt[x^3]{1-x+\sin{x}}}$

Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\sin{3x}}{\sin{4x}}}$

Evaluate $\displaystyle \large \lim_{x \,\to\, \pi}{\normalsize \dfrac{x-\pi}{\sin{x}}}$

Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{x-\sin{x}}{x^3}}$

Find $\large \displaystyle \lim_{x \,\to\, 0}{\normalsize \dfrac{\sin{(\pi\cos^2{x})}}{x^2}}$

Evaluate $\displaystyle \lim_{x \,\to\, 0}{\dfrac{\sin{2x}+3x}{4x+\sin{6x}}}$

$\displaystyle \large \lim_{x \,\to\, \tan^{-1}{3}} \normalsize {\dfrac{\tan^2{x}-2\tan{x}-3}{\tan^2{x}-4\tan{x}+3}}$

$\displaystyle \large \lim_{x \,\to\, 0} \normalsize \dfrac{1-\cos{6x}}{1-\cos{7x}}$

$\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{x^3\sin{x}}{{(\sec{x}-\cos{x})}^2}}$

$\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \dfrac{3\sin{\pi x}-\sin{3\pi x}}{{(x-1)}^3}}$

$\displaystyle \large \lim_{x \,\to\, \pi} \, \normalsize \dfrac{1-\cos{7(x-\pi)}}{5{(x-\pi)}^2}$

$\displaystyle \large \lim_{x \,\to\, 0} \normalsize \dfrac{1-\sqrt{1-\tan x}}{\sin x}$

$\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{2\sin{x}-\sin{2x}}{x^3}}$

$\displaystyle \large \lim_{x \,\to\, a}{\normalsize \dfrac{\cos{\sqrt{x}}-\cos{\sqrt{a}}}{x-a}}$

$\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \dfrac{\sin{(x-1)}}{x^2-1}}$

$\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{1-\cos{x}\sqrt{\cos{2x}}}{x^2}}$

$\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\cos{3x}-\cos{4x}}{x\sin{2x}}}$

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved