The limits problems involving the trigonometric functions appear in calculus. So, the limits of trigonometric functions worksheet is given here for you and it consists of simple to tough trigonometric limits examples with answers for your practice, and also solutions to learn how to find the limits of trigonometric functions in possible different methods by the trigonometric limits formulas.
$\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\sin{5x}-\sin{3x}}{x}}$
Evaluate $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \Big(\dfrac{\sin{x}}{x}\Big)^{\dfrac{1}{x^2}}}$
Evaluate $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \dfrac{1-\cos{mx}}{1-\cos{nx}}}$
Evaluate $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \dfrac{\log_{\displaystyle e}{\big(\cos{(\sin{x})}\big)}}{x^2}}$
Evaluate $\displaystyle \large \lim_{x\,\to\,\Large \frac{\pi}{4}}{\normalsize \dfrac{\sin{x}-\cos{x}}{x-\dfrac{\pi}{4}}}$
Evaluate $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \dfrac{\sin^3{x}}{\sin{x}-\tan{x}}}$
Evaluate $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \dfrac{\log_{e}{(\cos{x})}}{\sqrt[\Large 4]{1+x^2}-1}}$
Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{e^x-e^{x\cos{x}}}{x+\sin{x}}}$
Evaluate $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \dfrac{1-\cos{(2x)}}{x^2}}$
Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \Big(1+\sin{x}\Big)^{\Large \frac{1}{x}}}$
Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{(e^{-3x+2}-e^2)\sin{\pi x}}{4x^2}}$
Evaluate $\displaystyle \large \lim_{x \,\to\, 2}{\normalsize \dfrac{\cos{\Big(\dfrac{\pi}{x}\Big)}}{x-2}}$
Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{x\tan{2x}-2x\tan{x}}{(1-\cos{2x})^2}}$
Evaluate $\displaystyle \large \lim_{x \,\to\, \frac{\pi}{2}}{\normalsize \dfrac{\cos{x}}{\frac{\pi}{2}-x}}$
Evaluate $\displaystyle \large \lim_{x \,\to\, \pi}{\normalsize \dfrac{\sqrt{2+\cos{x}}-1}{(\pi-x)^2}}$
Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\tan{x}-\sin{x}}{x^3}}$
Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{(1-\cos{2x})(3+\cos{x})}{x\tan{4x}}}$
Evaluate $\displaystyle \large \lim_{x \,\to\, \frac{\pi}{2}}{\normalsize \dfrac{1+\cos{2x}}{(\pi-2x)^2}}$
Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \sqrt[x^3]{1-x+\sin{x}}}$
Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\sin{3x}}{\sin{4x}}}$
Evaluate $\displaystyle \large \lim_{x \,\to\, \pi}{\normalsize \dfrac{x-\pi}{\sin{x}}}$
Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{x-\sin{x}}{x^3}}$
Find $\large \displaystyle \lim_{x \,\to\, 0}{\normalsize \dfrac{\sin{(\pi\cos^2{x})}}{x^2}}$
Evaluate $\displaystyle \lim_{x \,\to\, 0}{\dfrac{\sin{2x}+3x}{4x+\sin{6x}}}$
$\displaystyle \large \lim_{x \,\to\, \tan^{-1}{3}} \normalsize {\dfrac{\tan^2{x}-2\tan{x}-3}{\tan^2{x}-4\tan{x}+3}}$
$\displaystyle \large \lim_{x \,\to\, 0} \normalsize \dfrac{1-\cos{6x}}{1-\cos{7x}}$
$\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{x^3\sin{x}}{{(\sec{x}-\cos{x})}^2}}$
$\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \dfrac{3\sin{\pi x}-\sin{3\pi x}}{{(x-1)}^3}}$
$\displaystyle \large \lim_{x \,\to\, \pi} \, \normalsize \dfrac{1-\cos{7(x-\pi)}}{5{(x-\pi)}^2}$
$\displaystyle \large \lim_{x \,\to\, 0} \normalsize \dfrac{1-\sqrt{1-\tan x}}{\sin x}$
$\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{2\sin{x}-\sin{2x}}{x^3}}$
$\displaystyle \large \lim_{x \,\to\, a}{\normalsize \dfrac{\cos{\sqrt{x}}-\cos{\sqrt{a}}}{x-a}}$
$\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \dfrac{\sin{(x-1)}}{x^2-1}}$
$\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{1-\cos{x}\sqrt{\cos{2x}}}{x^2}}$
$\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\cos{3x}-\cos{4x}}{x\sin{2x}}}$
A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.
Copyright © 2012 - 2023 Math Doubts, All Rights Reserved