$\tan{3\theta} \,=\, \dfrac{3\tan{\theta}-\tan^3{\theta}}{1-3\tan^2{\theta}}$
$\dfrac{3\tan{\theta}-\tan^3{\theta}}{1-3\tan^2{\theta}} \,=\, \tan{3\theta}$
It is called tan triple angle identity and used in two cases as a formula.
The tangent of triple angle identity is used to either expand or simplify the triple angle tan functions like $\tan{3A}$, $\tan{3x}$, $\tan{3\alpha}$ and etc. For example,
$(1) \,\,\,\,\,\,$ $\tan{3x} \,=\, \dfrac{3\tan{x}-\tan^3{x}}{1-3\tan^2{x}}$
$(2) \,\,\,\,\,\,$ $\tan{3A} \,=\, \dfrac{3\tan{A}-\tan^3{A}}{1-3\tan^2{A}}$
$(3) \,\,\,\,\,\,$ $\tan{3\alpha} \,=\, \dfrac{3\tan{\alpha}-\tan^3{\alpha}}{1-3\tan^2{\alpha}}$
Learn how to derive the rule of tan triple angle identity by geometry in trigonometry.
A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.
Copyright © 2012 - 2023 Math Doubts, All Rights Reserved