Math Doubts

Sum of angles of a triangle

Property

The sum of all three interior angles in a triangle is $180^\circ$.

sum of angles in a triangle

Three interior angles are formed internally by the intersection of every two sides of a triangle. The addition of all three angles is always equal to $180^\circ$ geometrically.

If, $\alpha$, $\beta$ and $\gamma$ are three interior angles in a triangle, then

$\alpha+\beta+\gamma = 180^\circ$

This basic geometrical property of a triangle is often used as a formula in geometry in some special cases

Proof

There are three geometrical steps involved for proving that the sum of interior angles in a triangle is equal to $180^\circ$.

$\Delta RST$ is a triangle and its angles are $\alpha$, $\beta$ and $\gamma$.

Draw a Corresponding Angle to a side

corresponding angles
  1. Extend the side $\small \overline{RT}$ from point $\small T$ and it passes through the point $\small U$.
  2. Now, draw a parallel line $\small \overline{TV}$ to the side $\small \overline{RS}$ at point $\small T$. Thus, $\small \angle VTU$ is formed externally.
  3. $\small \angle SRT$ and $\small \angle VTU$ are corresponding angles, which are actually formed by the intersection of parallel lines ($\small \overline{SR}$ and $\small \overline{TV}$) and their transversal line $\small \overline{RU}$. Geometrically, the corresponding angles are equal. Therefore, $\small \angle VTU = \angle SRT = \alpha$.

Identify Alternate Interior Angles

alternate interior angles

The side $\small \overline{ST}$ is another transversal of the parallel lines $\small \overline{SR}$ and $\small \overline{TV}$. In this case, $\small \angle RST$ and $\small \angle STV$ are interior alternate angles.

It is proved that when two parallel lines are intersected by their transversal, the interior alternate angles are equal.

$\small \angle RST = \angle STV = \beta$

Therefore, $\small \angle STV$ is also equal to $\beta$ geometrically.

Use concept of Straight Angle

$\small \angle RTS$, $\small \angle STV$ and $\small \angle VTU$ are three angles and sum of three interior angles is equal to $\small \angle RTU$.

sum of angles in a triangle

$\small \angle RTS + \angle STV + \angle VTU$ $\,=\,$ $\small \angle RTU$

Actually, $\small \angle RTU$ is a straight angle of the straight line $\small \overline{RU}$. Geometrically, the angle of a straight line is equal to $180^\circ$.

$\implies$ $\small \angle RTS + \angle STV + \angle VTU$ $\,=\,$ $\small \angle RTU$ $\,=\,$ $180^\circ$

$\implies$ $\gamma+\beta+\alpha$ $\,=\,$ $180^\circ$

$\,\,\, \therefore \,\,\,\,\,\, \alpha+\beta+\gamma \,=\, 180^\circ$

$\alpha$, $\beta$ and $\gamma$ are three interior angles of triangle $RST$ and it is proved that the sum of angles in a triangle is equal to $180^\circ$ geometrically.

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved