You have learned the logarithmic equations and it is your time to learn how to solve any logarithmic equation easily from the list of below solved logarithm problems. If you are a beginner, it’s very useful in solving logarithmic equations. It is also useful for practicing if you are an advanced learner.
$(1) \,\,\,\,\,\,$ $\log_{3}{(5x-2)}$ $-$ $2\log_{3}{\sqrt{3x+1}}$ $=$ $1-\log_{3}{4}$
$(2) \,\,\,\,\,\,$ $\dfrac{\log_{2}{(9-2^x)}}{3-x}$ $\,=\,$ $1$
$(3) \,\,\,\,\,\,$ $2\log_{2+\sqrt{3}} {(\sqrt{x^2+1}+x)}$ $\,+\,$ $\log_{2-\sqrt{3}} {(\sqrt{x^2+1}-x)}$ $\,=\,$ $3$
$(4) \,\,\,\,\,\,$ $\log_{x} 2 \times \log_{\frac{x}{16}}{2}$ $\,=\,$ $\log_{\frac{x}{64}}{2}$
$(5) \,\,\,\,\,\,$ $2\log_{x}{a}$ $+$ $\log_{ax}{a}$ $+$ $3\log_{a^2x}{a}$ $\,=\,$ $0$
$(6) \,\,\,\,\,\,$ $x+\log{(1+2^x)}$ $\,=\,$ $x\log{5}$ $+$ $\log{6}$
$(7) \,\,\,\,\,\,$ $x^{(\log_{2}{x})+4} \,=\, 32$
$(8) \,\,\,\,\,\,$ $x^{(\log_{2}{x})+4} \,=\, 32$
$(9) \,\,\,\,\,\,$ $\log_{5-x}{(x^2 -2x+65)}$ $\,=\,$ $2$
$(10) \,\,\,\,\,\,$ $\log_{5}{x}$ $+$ $\log_{x}{5}$ $\,=\,$ $\dfrac{5}{2}$
$(11) \,\,\,\,\,\,$ $\dfrac{x}{y}$ $+$ $\dfrac{y}{x}$ If $\log \Bigg[\dfrac{x+y}{3}\Bigg]$ $\,=\,$ $\dfrac{1}{2} (\log x + \log y)$
$(12) \,\,\,\,\,\,$ $\dfrac{\log(\sqrt{x+1}+1)}{\log \sqrt[3]{x-40}}$ $\,=\,$ $3$
$(13) \,\,\,\,\,\,$ $\log_{10} \Big[98$ $+$ $\sqrt{x^2-12x+36}\Big]$ $\,=\,$ $2$
$(14) \,\,\,\,\,\,$ $\log_{2}{x}$ $+$ $\log_{4}{x}$ $+$ $\log_{16}{x}$ $\,=\,$ $\dfrac{21}{4}$
$(15) \,\,\,\,\,\,$ $\log{7}$ $+$ $\log{(3x-2)}$ $\,=\,$ $\log{(x+3)}+1$
A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.
Copyright © 2012 - 2023 Math Doubts, All Rights Reserved