$\sin{\alpha}-\sin{\beta}$ $\,=\,$ $2\cos{\Big(\dfrac{\alpha+\beta}{2}\Big)}\sin{\Big(\dfrac{\alpha-\beta}{2}\Big)}$
An identity that expresses the transformation of difference of sine functions into product form is called the difference to product identity of sine functions.
When the $\alpha$ and $\beta$ represent the two angles of right triangles, the sine functions with both angles are written as $\sin{\alpha}$ and $\sin{\beta}$ in mathematical form. The difference of the two sine functions is written in the following mathematical form in trigonometry.
$\sin{\alpha}-\sin{\beta}$
The difference of sine functions can be transformed into the product of trigonometric functions as follows.
$\implies$ $\sin{\alpha}-\sin{\beta}$ $\,=\,$ $2\cos{\Big(\dfrac{\alpha+\beta}{2}\Big)}\sin{\Big(\dfrac{\alpha-\beta}{2}\Big)}$
The difference to product transformation formula for the sin functions is written in two popular forms.
$(1). \,\,\,$ $\sin{x}-\sin{y}$ $\,=\,$ $2\cos{\Big(\dfrac{x+y}{2}\Big)}\sin{\Big(\dfrac{x-y}{2}\Big)}$
$(2). \,\,\,$ $\sin{C}-\sin{D}$ $\,=\,$ $2\cos{\Big(\dfrac{C+D}{2}\Big)}\sin{\Big(\dfrac{C-D}{2}\Big)}$
Thus, we can write the difference to product transformation formula for sine functions in terms of any two angles.
Learn how to derive the difference to product transformation identity of sine functions in mathematics.
A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.
Copyright © 2012 - 2023 Math Doubts, All Rights Reserved