Math Doubts

Quotient Law of Limits

Formula

$\displaystyle \large \lim_{x \,\to\, a}{\normalsize \dfrac{f{(x)}}{g{(x)}}}$ $\,=\,$ $\dfrac{\displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(x)}}}{\displaystyle \large \lim_{x \,\to\, a}{\normalsize g{(x)}}}$

The limit of quotient of two functions as the input approaches some value is equal to quotient of their limits. It is called as quotient rule of limits and also called as division property of limits.

Proof

$x$ is a variable and two functions $f{(x)}$ and $g{(x)}$ are derived in terms of $x$. The limits of $f{(x)}$ and $g{(x)}$ as $x$ approaches to $a$ can be written mathematically as follows.

$(1) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(x)}}$ $\,=\,$ $f{(a)}$

$(2) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize g{(x)}}$ $\,=\,$ $g{(a)}$

Limit of Quotient of functions

Now, write limit of quotient of the functions $f{(x)}$ and $g{(x)}$ as $x$ tends to $a$ in mathematical form.

$\displaystyle \large \lim_{x \,\to\, a}{\normalsize \dfrac{f{(x)}}{g{(x)}}}$

Evaluate Limit of Quotient of functions

Evaluate the limit of division of the functions as $x$ tends to $a$ by replacing $x$ by $a$.

$\displaystyle \large \lim_{x \,\to\, a}{\normalsize \dfrac{f{(x)}}{g{(x)}}}$ $\,=\,$ $\dfrac{f{(a)}}{g{(a)}}$

Replace the Limits of functions

Lastly, substitute the limits $f{(a)}$ and $g{(a)}$ in limit form.

$\,\,\, \therefore \,\,\,\,\,\, \displaystyle \large \lim_{x \,\to\, a}{\normalsize \dfrac{f{(x)}}{g{(x)}}}$ $\,=\,$ $\dfrac{\displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(x)}}}{\displaystyle \large \lim_{x \,\to\, a}{\normalsize g{(x)}}}$

Therefore, it has proved that the limit of quotient of two functions as input approaches some value is equal to quotient of their limits. So, it is called as quotient rule of limits and also called as division property of limits.

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved