Math Doubts

Main diagonal of a Rectangular matrix

A straight path that connects the entries (or elements) whose row and column are the same in a rectangular matrix is called the main diagonal of a rectangular matrix.

Introduction

In a rectangular matrix, the total number of elements in a row is not equal to the total number of entries in a column but there is an element whose row and column are equal in every row or column of a rectangular matrix, those elements can be connected by a straight path diagonally and it is called a main diagonal of a rectangular matrix.

principal diagonal of rectangular matrix

The main diagonal of a rectangular matrix is also called by the following four names alternatively in mathematics.

  1. Principal diagonal of a rectangular matrix
  2. Primary diagonal of a rectangular matrix
  3. Leading diagonal of a rectangular matrix
  4. Major diagonal of a rectangular matrix

For example, we have some entries and they are arranged in $m$ rows and $n$ columns. The arrangement of the elements can be expressed in a matrix form as follows.

$M$ $\,=\,$ $\begin{bmatrix} \color{red} e_{11} & e_{12} & e_{13} & e_{14} & \cdots & e_{1m} \\ e_{21} & \color{red} e_{22} & e_{23} & e_{24} & \cdots & e_{2m} \\ e_{31} & e_{32} & \color{red} e_{33} & e_{34} & \cdots & e_{3m} \\ \vdots & \vdots & \vdots & \color{red} \ddots & \vdots & \vdots \\ e_{m1} & e_{m2} & e_{m3} & e_{m4} & \cdots & e_{mn} \\ \end{bmatrix}$

In this case, the total number of elements in a row is not equal to the total number of elements in a column. Hence, a rectangle shape is formed in the matrix and the matrix is called a rectangular matrix.

In the rectangular matrix $M$, the elements $e_{11}$, $e_{22}$, $e_{33}$, $e_{44}$ and so on can be connected diagonally by a straight path. Hence, the diagonal path is called the main diagonal of the rectangular matrix $M$.

Examples

Let’s learn the concept of main diagonal of a rectangular matrix from two understandable examples.

$A$ $\,=\,$ $\begin{bmatrix} \color{red} 5 & 0 & 1 & 7 \\ 2 & \color{red} 3 & 9 & 8 \\ 3 & 5 & \color{red} 4 & 2 \\ \end{bmatrix}$

The matrix $A$ represents a rectangular matrix of the order $3 \times 4$. In this matrix, we have to identify the entries, whose row and column are the same. In the rectangular matrix $A$, the elements $e_{11} \,=\, 5$, $e_{22} \,=\, 3$ and $e_{33} \,=\, 4$.

Hence, the diagonal straight path that connects all of these elements is called the principal diagonal of the rectangular matrix $A$.

$B$ $\,=\,$ $\begin{bmatrix} \color{red} 4 & 0 & 2 & 1 & 7 \\ 6 & \color{red} 1 & 7 & 8 & 3 \\ 8 & 1 & \color{red} 7 & 9 & 2 \\ 3 & 5 & 7 & \color{red} 5 & 5 \\ 0 & 3 & 2 & 6 & \color{red} 6 \\ 7 & 4 & 3 & 6 & 3 \\ \end{bmatrix}$

The matrix $B$ is a rectangular matrix of the order $6 \times 5$. Now, identify the elements, whose row and column are the same. In the rectangular matrix $B$, $e_{11} \,=\, 4$, $e_{22} \,=\, 1$, $e_{33} \,=\, 7$, $e_{44} \,=\, 5$ and $e_{55} \,=\, 6$. Therefore, the straight path that connects these entries (or elements) diagonally is called the leading diagonal of the rectangular matrix $B$.

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved