Math Doubts

Logarithmic Terms

A term that represents a quantity in logarithmic form is called a logarithmic term. It can also be simply called as a log term.

Introduction

Any quantity can be expressed in logarithmic form. If the quantity is written as a term in logarithmic form then the term is known as a logarithmic term.

Example

$3$ is a number. It can be written in logarithmic form as follows.

$3 \,=\, \log_{2}{8}$

Mathematically, the term $\log_{2}{8}$ represents the quantity $3$ and moreover, it is in logarithmic form. Therefore, the term $\log_{2}{8}$ is called as a logarithmic term, or simply a log term.

Cases

Logarithmic terms are formed in four different ways possibly.

Numbers

Every real number can be expressed in logarithmic form. So, just consider every real number as a logarithmic term.

Direct form

Only a single logarithmic term represents the quantity completely.

$(1) \,\,\,\,\,\,$ $\log_{3}{10}$

$(2) \,\,\,\,\,\,$ ${(\log_{6}{1898})}^4$

$(3) \,\,\,\,\,\,$ $\log_{e}{91}$

$(4) \,\,\,\,\,\,$ $\log_{a}{b^2}$

$(5) \,\,\,\,\,\,$ $\log_{xy}{(1+xyz)}$

Product form

The product of two or more quantities is also a quantity. So, a term can be a product of two or more quantities in which at least a quantity can be in logarithmic form. The terms are called as log terms in such cases.

$(1) \,\,\,\,\,\,$ $5\log_{2}{7}$

$(2) \,\,\,\,\,\,$ $-8{(\log_{4}{190})}^2$

$(3) \,\,\,\,\,\,$ $0.78\log_{e}{11211}$

$(4) \,\,\,\,\,\,$ $b\sin{(d^2)}\log_{c}{ac^3}$

$(5) \,\,\,\,\,\,$ $(2+x^2)\log_{z}{(1-x^2)}$

Division form

The quotient of two quantities is also a quantity. So, a term is also quotient of quantities in which at least a quantity can be in log form, then the terms are called as log terms mathematically.

$(1) \,\,\,\,\,\,$ $\dfrac{-7}{\log_{5}{3}}$

$(2) \,\,\,\,\,\,$ $\dfrac{{(\log_{12}{50})}^7}{10}$

$(3) \,\,\,\,\,\,$ $\dfrac{5}{0.9\log_{e}{(7g)}\log_{2}{h}}$

$(4) \,\,\,\,\,\,$ $\dfrac{\log_{10}{(xyz)}}{z^2}$

$(5) \,\,\,\,\,\,$ $\dfrac{1-b}{\log_{b}{(1-ab^8)}}$

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved