Math Doubts

Limits of Trigonometric functions

Let a literal $x$ denotes an angle of right triangle. Then, the trigonometric functions sine, cosine, tangent, cotangent, secant and cosecant are written as $\sin{x}$, $\cos{x}$, $\tan{x}$, $\cot{x}$, $\sec{x}$ and $\csc{x}$ respectively. Now, let’s learn the limits of trigonometric functions with proofs.

Sine

$(1).\,\,$ $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \sin{x}}$ $\,=\,$ $0$

$(2).\,\,$ $\displaystyle \large \lim_{x\,\to\,\pm \infty}{\normalsize \sin{x}}$ $\,=\,$ $Undefined$

Cosine

$(1).\,\,$ $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \cos{x}}$ $\,=\,$ $1$

$(2).\,\,$ $\displaystyle \large \lim_{x\,\to\,\pm \infty}{\normalsize \cos{x}}$ $\,=\,$ $Undefined$

Tangent

$(1).\,\,$ $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \tan{x}}$ $\,=\,$ $0$

$(2).\,\,$ $\displaystyle \large \lim_{x\,\to\,\pm \infty}{\normalsize \tan{x}}$ $\,=\,$ $Undefined$

Co-Tangent

$(1).\,\,$ $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \cot{x}}$ $\,=\,$ $\infty$

$(2).\,\,$ $\displaystyle \large \lim_{x\,\to\,\pm \infty}{\normalsize \cot{x}}$ $\,=\,$ $Undefined$

Secant

$(1).\,\,$ $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \sec{x}}$ $\,=\,$ $1$

$(2).\,\,$ $\displaystyle \large \lim_{x\,\to\,\pm \infty}{\normalsize \sec{x}}$ $\,=\,$ $Undefined$

Cosecant

$(1).\,\,$ $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \csc{x}}$ $\,=\,$ $\infty$

$(2).\,\,$ $\displaystyle \large \lim_{x\,\to\,\pm \infty}{\normalsize \csc{x}}$ $\,=\,$ $Undefined$

Formulas

$(1).\,\,$ $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \dfrac{\sin{x}}{x}}$ $\,=\,$ $1$

$(2).\,\,$ $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \dfrac{\tan{x}}{x}}$ $\,=\,$ $1$

There are two standard limit formulas with trigonometric functions in calculus and examples to learn how to use them in finding the limits of trigonometric functions.

Worksheet

$(1).\,\,$ $\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \dfrac{\sin{(x-1)}}{x^2-1}}$

$(2).\,\,$ $\large \displaystyle \lim_{x \,\to\, 0}{\normalsize \dfrac{\sin{(\pi\cos^2{x})}}{x^2}}$

$(3).\,\,$ $\displaystyle \large \lim_{x \,\to\, 0} \normalsize \dfrac{1-\cos{6x}}{1-\cos{7x}}$

The list of limits questions with solutions for practice and to learn how to find the limits of functions in which the trigonometric functions are involved.

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved