$\displaystyle \large \lim_{x\,\to\,\pm\infty}{\normalsize \dfrac{1}{x}}$ $\,=\,$ $0$
$\displaystyle \large \lim_{x\,\to\,+\infty}{\normalsize e^x}$ $\,=\,$ $\infty$
$\displaystyle \large \lim_{x\,\to\,-\infty}{\normalsize e^x}$ $\,=\,$ $0$
$\displaystyle \large \lim_{x\,\to\,\pm\infty}{\normalsize \bigg(1+\dfrac{1}{\displaystyle x}\bigg)^x}$ $\,=\,$ $e$
$\displaystyle \large \lim_{x\,\to\,\pm \infty}{\normalsize \dfrac{\sin{x}}{x}}$ $\,=\,$ $0$
A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.
Copyright © 2012 - 2023 Math Doubts, All Rights Reserved