$\displaystyle \large \lim_{x \,\to\, a}{\normalsize b^{\displaystyle f(x)}} \normalsize \,=\, b^{\, \displaystyle \large \lim_{x \,\to\, a} \, {\normalsize f(x)}}$
The limit of an exponential function is equal to the limit of the exponent with same base. It is called the limit rule of an exponential function.
Let $a$ and $b$ represent two constants, and $x$ represents a variable. A function in terms of $x$ is written as $f(x)$ mathematically. In this case, the constant $a$ is a value of $x$, and the exponential function in terms of $b$ and $f(x)$ is written as $b^{\displaystyle f(x)}$ in mathematics.
The limit of exponential function $b^{\displaystyle f(x)}$ as $x$ approaches $a$ is written in the following mathematical form in calculus.
$\displaystyle \large \lim_{x \,\to\, a}{\normalsize b^{\displaystyle f(x)}}$
It is equal to the limit of the function $f(x)$ as $x$ approaches $a$ with the base $b$.
$\implies$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize b^{\displaystyle f(x)}} \normalsize \,=\, b^{\, \displaystyle \large \lim_{x \,\to\, a} \, {\normalsize f(x)}}$
It is called the limit rule of an exponential function in calculus.
Evaluate $\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \Big(3^{\displaystyle x+2}\Big)}$
Find the value of the given function by direct substitution.
$\implies$ $\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \Big(3^{\displaystyle x+2}\Big)}$ $\,=\,$ $3^{\displaystyle 1+2}$
$\implies$ $\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \Big(3^{\displaystyle x+2}\Big)}$ $\,=\,$ $3^{\displaystyle 3}$
$\implies$ $\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \Big(3^{\displaystyle x+2}\Big)}$ $\,=\,$ $27$
Now, evaluate $3^{\, \displaystyle \large \lim_{x \,\to\, 1}{\normalsize (x+2)}}$ by direct substitution.
$\implies$ $3^{\, \displaystyle \large \lim_{x \,\to\, 1}{\normalsize (x+2)}}$ $\,=\,$ $3^{(1+2)}$
$\implies$ $3^{\, \displaystyle \large \lim_{x \,\to\, 1}{\normalsize (x+2)}}$ $\,=\,$ $3^{3}$
$\implies$ $3^{\, \displaystyle \large \lim_{x \,\to\, 1}{\normalsize (x+2)}}$ $\,=\,$ $27$
Therefore, it is evaluated that $\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \Big(3^{\displaystyle x+2}\Big)}$ $\,=\,$ $3^{\, \displaystyle \large \lim_{x \,\to\, 1}{\normalsize (x+2)}}$ $\,=\,$ $27$
Learn how to derive the limit rule of an exponential function in calculus mathematically.
A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.
Copyright © 2012 - 2023 Math Doubts, All Rights Reserved