Math Doubts

$\displaystyle \large \lim_{x \,\to\, \infty}{\normalsize {\Big(1+\dfrac{1}{x}\Big)}^{\displaystyle x}}$ formula

Formula

$\displaystyle \large \lim_{x \,\to\, \infty}{\normalsize {\Big(1+\dfrac{1}{x}\Big)}^{\displaystyle x}}$ $\,=\,$ $e$

Introduction

The limit of $1+\dfrac{1}{x}$ raised to the power of $x$ as $x$ approaches infinity is equal to mathematical constant $e$.

In limits, the exponential functions similar to this function are often appeared. So, it’s considered as a standard result and used as a formula in calculus for evaluating the limits of exponential functions when its input tends to infinity.

Other form

This standard result of limits can also be written in terms of any variable.

$(1) \,\,\,$ $\displaystyle \large \lim_{g \,\to\, \infty}{\normalsize {\Big(1+\dfrac{1}{g}\Big)}^{\displaystyle g}}$ $\,=\,$ $e$

$(2) \,\,\,$ $\displaystyle \large \lim_{y \,\to\, \infty}{\normalsize {\Big(1+\dfrac{1}{y}\Big)}^{\displaystyle y}}$ $\,=\,$ $e$

Proof

Learn how to prove the limit of $x$-th power of binomial $1+\dfrac{1}{x}$ as $x$ approaches infinity is equal to $e$ in mathematics.

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved