There are three types of algebraic integral rules in integral calculus. They are used as formulas in calculating both indefinite and definite integrals of the algebraic functions. So, let’s learn each algebraic integration formula with proof to know how to use them in indefinite and definite integration problems.
$\displaystyle \int{x^n\,}dx$ $\,=\,$ $\dfrac{x^{n+1}}{n+1}+c$
The following two exponential integral rules are the integration formulae in which the algebraic functions are in exponential form.
$(1).\,\,\,$ $\displaystyle \int{a^x\,}dx$ $\,=\,$ $\dfrac{a^x}{\log_{e}{a}}+c$
$(2).\,\,\,$ $\displaystyle \int{e^x\,}dx$ $\,=\,$ $e^x+c$
The following six reciprocal integral rules are the integration formulas in which the algebraic functions are in multiplicative inverse form.
$(1).\,\,\,$ $\displaystyle \int{\dfrac{1}{x}\,}dx$ $\,=\,$ $\log_{e}{x}+c$
$(2).\,\,\,$ $\displaystyle \int{\dfrac{1}{1+x^2}\,}dx$ $\,=\,$ $\arctan{x}+c$ (or) $\tan^{-1}{x}+c$
$(3).\,\,\,$ $\displaystyle \int{\dfrac{1}{x^2-a^2}\,}dx$ $\,=\,$ $\dfrac{1}{2a}\log_{e}{\Bigg|\dfrac{x-a}{x+a}\Bigg|}+c$
$(4).\,\,\,$ $\displaystyle \int{\dfrac{1}{x^2+a^2}\,}dx$ $\,=\,$ $\dfrac{1}{a}\arctan{\Big(\dfrac{x}{a}\Big)}+c$ (or) $\dfrac{1}{a}\tan^{-1}{\Big(\dfrac{x}{a}\Big)}+c$
$(5).\,\,\,$ $\displaystyle \int{\dfrac{1}{\sqrt{1-x^2}}\,}dx$ $\,=\,$ $\arcsin{x}+c$ (or) $\sin^{-1}{x}+c$
$(6).\,\,\,$ $\displaystyle \int{\dfrac{1}{|x|\sqrt{x^2-1}}\,}dx$ $\,=\,$ $\operatorname{arcsec}{x}+c$ (or) $\sec^{-1}{x}+c$
List of the problems to learn how to find the integrals of the algebraic functions by the integration rules.
A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.
Copyright © 2012 - 2023 Math Doubts, All Rights Reserved