The irrational functions are come in integral calculus and it is not possible to find the integration of the irrational functions with the standard integral rules. Hence, it requires some special integral formulas in some cases to evaluate the integrals of the irrational functions. The following are the integral rules of the irrational functions with proofs.
$\displaystyle \int{\dfrac{1}{\sqrt{x^2+a^2}}}\,dx$ $\,=\,$ $\log_{e}{\Big|x+\sqrt{x^2+a^2}\Big|}+c$
$\displaystyle \int{\dfrac{1}{\sqrt{x^2-a^2}}}\,dx$ $\,=\,$ $\log_{e}{\Big|x+\sqrt{x^2-a^2}\Big|}+c$
$\displaystyle \int{\dfrac{1}{\sqrt{a^2-x^2}}}\,dx$ $\,=\,$ $\arcsin{\bigg(\dfrac{x}{a}\bigg)}+c$ or $\sin^{-1}{\bigg(\dfrac{x}{a}\bigg)}+c$
A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.
Copyright © 2012 - 2023 Math Doubts, All Rights Reserved