Math Doubts

Integral rule of Reciprocal of Sum of One and Square of variable

Formula

$\displaystyle \int{\dfrac{1}{1+x^2}\,\,}dx$ $\,=\,$ $\tan^{-1}{x}+c \,\,\,$ or $\,\,\, \arctan{(x)}+c$

Introduction

When $x$ is considered to represent a variable, the sum of one and square of variable $x$ is written as $1+x^2$ mathematically. The inverse tangent function written as $\tan^{-1}{x}$ or $\arctan{(x)}$ in mathematics. The integral of the reciprocal of the expression $1+x^2$ is expressed in the following mathematical form.

$\displaystyle \int{\dfrac{1}{1+x^2}\,\,}dx$

The indefinite integral of the rational expression with respect to $x$ is equal to the tan inverse of $x$.

$(1)\,\,\,$ $\displaystyle \int{\dfrac{1}{1+x^2}\,\,}dx$ $\,=\,$ $\tan^{-1}{x}+c$

$(2)\,\,\,$ $\displaystyle \int{\dfrac{1}{1+x^2}\,\,}dx$ $\,=\,$ $\arctan{(x)}+c$

Alternative form

The integral law of reciprocal sum of one and square of variable can be expressed in terms of any variable.

$(1)\,\,\,$ $\displaystyle \int{\dfrac{1}{1+l^2}\,\,}dl$ $\,=\,$ $\tan^{-1}{l}+c$

$(2)\,\,\,$ $\displaystyle \int{\dfrac{1}{1+q^2}\,\,}dq$ $\,=\,$ $\arctan{(q)}+c$

$(3)\,\,\,$ $\displaystyle \int{\dfrac{1}{1+y^2}\,\,}dy$ $\,=\,$ $\tan^{-1}{y}+c$

Proof

Learn how to prove the integration formula for the multiplicative inverse of one plus variable squared in integral calculus.

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved