There are some fundamental integral rules and they are used as formulas in integral calculus. So, learn each formula with proof for studying the integral calculus clearly.
The list of integration formulas for the algebraic functions with proofs.
$(1)\,\,\,$ $\displaystyle \int{x^n\,}dx \,=\, \dfrac{x^{n+1}}{n+1}+c$
$(2)\,\,\,$ $\displaystyle \int{a^x\,}dx \,=\, \dfrac{a^x}{\log_e{|a|}}+c$
$(3)\,\,\,$ $\displaystyle \int{e^x\,}dx \,=\, e^x+c$
$(4)\,\,\,$ $\displaystyle \int{\dfrac{1}{x}\,}dx \,=\, \log_e{|x|}+c$
$(5)\,\,\,$ $\displaystyle \int{\dfrac{1}{ax\pm b}\,}dx \,=\, \dfrac{1}{a}\log_e{|ax\pm b|}+c$
The list of integration formulas for the trigonometric functions with proofs.
$(1)\,\,\,$ $\displaystyle \int{\sin{x}\,}dx \,=\, -\cos{x}+c$
$(2)\,\,\,$ $\displaystyle \int{\cos{x}\,}dx \,=\, \sin{x}+c$
$(3)\,\,\,$ $\displaystyle \int{\tan{x}\,}dx \,=\, -\log_e{|\cos{x}|}+c$
$(4)\,\,\,$ $\displaystyle \int{\cot{x}\,}dx \,=\, \log_e{|\sin{x}|}+c$
$(5)\,\,\,$ $\displaystyle \int{\sec^2{x}\,}dx \,=\, \tan{x}+c$
$(6)\,\,\,$ $\displaystyle \int{\csc^2{x}\,}dx \,=\, -\cot{x}+c$
$(7)\,\,\,$ $\displaystyle \int{\sec{x}\tan{x}\,}dx \,=\, \sec{x}+c$
$(8)\,\,\,$ $\displaystyle \int{\csc{x}\cot{x}\,}dx \,=\, -\csc{x}+c$
The list of integration formulas for the hyperbolic functions with proofs.
$\Large \int \normalsize \sinh{x} dx = \cosh{x}+C$
$\Large \int \normalsize \cosh{x} dx = \sinh{x}+C$
$\Large \int \normalsize \tanh{x} dx = \log_{e}{|\cosh{x}|}+C$
$\Large \int \normalsize \coth{x} dx = \log_{e}{|\sinh{x}|}+C$
$\Large \int \normalsize \operatorname{sech}{x} dx = 2\tan^{-1}{(e^x)}+C$
$\Large \int \normalsize \operatorname{csch}{x} dx = 2\cosh^{-1}{(e^x)}+C$
$\Large \int \normalsize \sec^2h{x} dx = \tanh{x}+C$
$\Large \int \normalsize \csc^2h{x} dx = -\cot{x}+C$
$\Large \int \normalsize \operatorname{sech}{x}\tanh{x} dx = -\operatorname{sech}{x}+C$
$\Large \int \normalsize \operatorname{csch}{x}\coth{x} dx = -\csc{x}+C$
A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.
Copyright © 2012 - 2023 Math Doubts, All Rights Reserved