Math Doubts

Hyperbolic sine function

The ratio of subtraction of negative natural exponential function from positive natural exponential function to $2$ is called the hyperbolic sine function.

Introduction

$e$ is a positive irrational mathematical constant and assume, $x$ is a variable. So, the positive natural exponential function is denoted by $e^x$ and the negative natural exponential function is represented by $e^{-x}$.

The subtraction of negative natural exponential function from positive natural exponential function is written as $e^x\,–\,e^{-x}$.

The ratio of subtraction of them to number $2$ is written as the below mathematical form.

$\large \dfrac{e^x-e^{-x}}{2}$

The ratio of them is called the hyperbolic sine function. The hyperbolic sine is simply written as $\sinh$ in short form but the function is expressed in terms of $x$. Therefore, the hyperbolic sine function is written as $\sinh{x}$ in mathematics.

$\large \sinh{x} = \dfrac{e^x-e^{-x}}{2}$

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved