$(1).\,\,$ $\dfrac{\log{x}}{\log{5}}$ $\,=\,$ $\dfrac{\log{36}}{\log{6}}$
$(2).\,\,$ $\dfrac{\log{64}}{\log{y}}$ $\,=\,$ $\dfrac{\log{36}}{\log{6}}$
Firstly, let us find the value of the quotient of common logarithm of thirty-six divided by common logarithm of six by simplification. The numbers inside the logarithm in the numerator and denominator are thirty-six and six respectively. Arithmetically, the numerator thirty-six can be written as the factors of the number six.
$\implies$ $\dfrac{\log{36}}{\log{6}}$ $\,=\,$ $\dfrac{\log{(6 \times 6)}}{\log{6}}$
$=\,\,$ $\dfrac{\log{(6^2)}}{\log{6}}$
$=\,\,$ $\dfrac{\log{6^2}}{\log{6}}$
$=\,\,$ $\dfrac{2 \times \log{6}}{\log{6}}$
$=\,\,$ $2 \times \dfrac{\log{6}}{\log{6}}$
$=\,\,$ $2 \times \dfrac{\cancel{\log{6}}}{\cancel{\log{6}}}$
$=\,\,$ $2 \times 1$
$\,\,\,\therefore\,\,\,\,\,\,$ $\dfrac{\log{36}}{\log{6}}$ $\,=\,$ $2$
$\dfrac{\log{x}}{\log{5}}$ $\,=\,$ $\dfrac{\log{36}}{\log{6}}$
$\implies$ $\dfrac{\log{x}}{\log{5}}$ $\,=\,$ $2$
$\implies$ $\log{x}$ $\,=\,$ $2 \times \log{5}$
$\implies$ $\log{x}$ $\,=\,$ $\log{5^2}$
$\implies$ $\log{x}$ $\,=\,$ $\log{25}$
$\,\,\,\therefore\,\,\,\,\,\,$ $x$ $\,=\,$ $25$
$\dfrac{\log{64}}{\log{y}}$ $\,=\,$ $\dfrac{\log{36}}{\log{6}}$
$\implies$ $\dfrac{\log{64}}{\log{y}}$ $\,=\,$ $2$
$\implies$ $\log{64}$ $\,=\,$ $2 \times \log{y}$
$\implies$ $\log{64}$ $\,=\,$ $\log{y^2}$
$\implies$ $\log{y^2}$ $\,=\,$ $\log{64}$
$\implies$ $y^2$ $\,=\,$ $64$
$\implies$ $y$ $\,=\,$ $\pm \sqrt{64}$
$\implies$ $y$ $\,=\,$ $\pm \sqrt{8^2}$
$\implies$ $y$ $\,=\,$ $\pm 8$
$\implies$ $y$ $\,=\,$ $\pm 8$
A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.
Copyright © 2012 - 2025 Math Doubts, All Rights Reserved