Math Doubts

Find $2A-3B$ if $A = \begin{bmatrix} 17 & 5 & 19 \\ 11 & 8 & 13 \end{bmatrix} $ and $B = \begin{bmatrix} 9 & 3 & 7 \\ 1 & 6 & 5 \end{bmatrix} $

$A =
\begin{bmatrix}
17 & 5 & 19 \\
11 & 8 & 13
\end{bmatrix}
$ and $B =
\begin{bmatrix}
9 & 3 & 7 \\
1 & 6 & 5
\end{bmatrix}
$ are two matrices. It is required to find the value of an expression $2A-3B$. Actually, the two matrices are $2 \times 3$. It is possible and can be evaluated by some basic mathematical operations in matrices.

Multiply matrix A by 2

The value of $2A$ can be obtained by multiplying the matrix $A$ by number $2$. It can be done by multiplying every element in the matrix $A$ by $2$.

$2 \times A \,=\,
2 \times \begin{bmatrix}
17 & 5 & 19 \\
11 & 8 & 13
\end{bmatrix}$

$\implies 2A \,=\,
2 \times \begin{bmatrix}
17 & 5 & 19 \\
11 & 8 & 13
\end{bmatrix}$

$\implies 2A \,=\,
\begin{bmatrix}
2 \times 17 & 2 \times 5 & 2 \times 19 \\
2 \times 11 & 2 \times 8 & 2 \times 13
\end{bmatrix}$

$\,\,\, \therefore \,\,\,\,\,\, 2A \,=\,
\begin{bmatrix}
34 & 10 & 38 \\
22 & 16 & 26
\end{bmatrix}$

Multiply matrix B by 3

Similarly, the value of $3B$ can be evaluated by multiplying the matrix $B$ by number $3$. It can also be done by multiplying each element in the matrix $B$ by $3$.

$3 \times B \,=\,
3 \times \begin{bmatrix}
9 & 3 & 7 \\
1 & 6 & 5
\end{bmatrix}$

$\implies 3B \,=\,
3 \times \begin{bmatrix}
9 & 3 & 7 \\
1 & 6 & 5
\end{bmatrix}$

$\implies 3B \,=\,
\begin{bmatrix}
3 \times 9 & 3 \times 3 & 3 \times 7 \\
3 \times 1 & 3 \times 6 & 3 \times 5
\end{bmatrix}$

$\,\,\, \therefore \,\,\,\,\,\, 3B \,=\,
\begin{bmatrix}
27 & 9 & 21 \\
3 & 18 & 15
\end{bmatrix}$

Subtract 3B matrix from 2A

The values of $2A$ and $3B$ are two matrices. The value of $2A-3B$ can be obtained by subtracting the matrix $3B$ from the matrix $2A$.

$2A-3B$ $\,=\,$ $\begin{bmatrix}
34 & 10 & 38 \\
22 & 16 & 26
\end{bmatrix}$ $\,-\,$ $\begin{bmatrix}
27 & 9 & 21 \\
3 & 18 & 15
\end{bmatrix}$

$\implies 2A-3B$ $\,=\,$ $\begin{bmatrix}
34-27 & 10-9 & 38-21 \\
22-3 & 16-18 & 26-15
\end{bmatrix}$

$\,\,\, \therefore \,\,\,\,\,\, 2A-3B$ $\,=\,$ $\begin{bmatrix}
7 & 1 & 17 \\
19 & -2 & 11
\end{bmatrix}$

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved