Math Doubts

Equation of a circle centered at the origin

Equation

$x^2+y^2 \,=\, r^2$

Introduction

A circle without touching any axis of the two dimensional cartesian coordinate system is a standard form a circle and its circle is called the equation of a circle in standard form.

circle centered at the origin of two dimensional space

Let $C$ represents the center (or centre) of a circle, $P$ represents a point on the circumference of the circle and $r$ represents the radius of circle.

Let $a$ and $b$ be $x$ and $y$ coordinates of center (or centre) and the center in coordinate form is written as $C(a, b)$. Similarly, $x$ and $y$ be the horizontal and vertical coordinates of point $P$ and it is written as $P(x, y)$ in coordinate form.

The equation of a circle in standard form is written in mathematics as follows.

$x^2+y^2 \,=\, r^2$

Proof

Learn how to derive the equation of a circle in general form when the circle does not touch both axes.

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved