Math Doubts

Derivative of cotx formula

Formula

$\dfrac{d}{dx}{\, (\cot{x})} \,=\, -\csc^2{x} \,\,$ (or) $\,\, -\operatorname{cosec}^2{x}$

The derivative of cot function with respect to a variable is equal to negative of square of the cosecant function. It is read as the differentiation of $\cot{x}$ function with respect to $x$ is equal to $–\csc^2x$.

Introduction

The cotangent function is written as $\cot{x}$ in mathematics if $x$ is used to represent a variable. In differential calculus, the differentiation of the cot function with respect to $x$ is written in the following mathematical form.

$\dfrac{d}{dx}{\, (\cot{x})}$

The derivative of $\cot{x}$ function with respect to $x$ is also written as $\dfrac{d{\,(\cot{x})}}{dx}$. It is also written as ${(\cot{x})}’$ simply in differential calculus.

Other form

The formula for derivative of the cot function can be written in the form of any variable.

$(1) \,\,\,$ $\dfrac{d}{db}{\, (\cot{b})} \,=\, -\csc^2{b}$

$(2) \,\,\,$ $\dfrac{d}{dp}{\, (\cot{p})} \,=\, -\csc^2{p}$

$(3) \,\,\,$ $\dfrac{d}{dy}{\, (\cot{y})} \,=\, -\csc^2{y}$

Proof

Learn how to derive the derivative of the cotangent function from first principle in differential calculus.

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved