Math Doubts

$\dfrac{d}{dx}{\ln{x}}$ formula Proof

Formula

$\dfrac{d}{dx}{\ln{x}}$ $\,=\,$ $\dfrac{1}{x}$

$x$ is a variable and the natural logarithm of $x$ is written as $\log_{e}{x}$ or $\ln{x}$ in logarithmic mathematics. Now, differentiate logarithm of $x$ with respect to $x$.

The differentiation of logarithm of $x$ with respect to $x$ is written as $\dfrac{d}{dx}\log_{e}{x}$ (or) $\dfrac{d}{dx}\ln{x}$ in calculus.

Express derivative of log function in limit form

According to derivative of a function with respect to $x$ in the limit form,

$\dfrac{d}{dx} \, f{(x)}$ $\,=\,$ $\displaystyle \large \lim_{h \,\to\, 0} \normalsize \dfrac{f{(x+h)}-f{(x)}}{h}$

Take $f{(x)} = \log_{e}{x}$, then $f{(x+h)} = \log_{e}{(x+h)}$. Now, express derivative of log function in limit form.

$\dfrac{d}{dx} \log_{e}{x}$ $\,=\,$ $\displaystyle \large \lim_{h \,\to\, 0} \normalsize \dfrac{\log_{e}{(x+h)}-\log_{e}{x}}{h}$

Use Quotient rule of logarithms

Try quotient law of logarithms to combine the difference of the logarithmic functions.

$= \,\,\,$ $\displaystyle \large \lim_{h \,\to\, 0} \normalsize \dfrac{\log_{e}{\Bigg(\dfrac{x+h}{x}\Bigg)}}{h}$

$= \,\,\,$ $\displaystyle \large \lim_{h \,\to\, 0} \normalsize \dfrac{\log_{e}{\Bigg(\dfrac{x}{x}+\dfrac{h}{x}\Bigg)}}{h}$

$= \,\,\,$ $\displaystyle \large \lim_{h \,\to\, 0} \normalsize \dfrac{\log_{e}{\Bigg(\require{cancel} \dfrac{\cancel{x}}{\cancel{x}}+\dfrac{h}{x}\Bigg)}}{h}$

$= \,\,\,$ $\displaystyle \large \lim_{h \,\to\, 0} \normalsize \dfrac{\log_{e}{\Bigg(1+\dfrac{h}{x}\Bigg)}}{h}$

Expand the logarithmic function

According to logarithmic mathematics, the $\ln{(1+x)}$ can be expanded as an infinite series.

$\log_{e}{(1+x)}$ $\,=\,$ $x-\dfrac{x^2}{2}+\dfrac{x^3}{3}-\dfrac{x^4}{4}+\ldots$

In our case, $\log_{e}{\Bigg(1+\dfrac{h}{x}\Bigg)}$ is a logarithmic function. It can be expanded in the same way by replacing $x$ by $\dfrac{h}{x}$.

$= \,\,\,$ $\displaystyle \large \lim_{h \,\to\, 0} \normalsize \dfrac{ \dfrac{h}{x}-\dfrac{{\Bigg(\dfrac{h}{x}\Bigg)}^2}{2}+\dfrac{{\Bigg(\dfrac{h}{x}\Bigg)}^3}{3}-\dfrac{{\Bigg(\dfrac{h}{x}\Bigg)}^4}{4}+\ldots}{h}$

$= \,\,\,$ $\displaystyle \large \lim_{h \,\to\, 0} \normalsize \dfrac{\dfrac{h}{x}-\dfrac{h^2}{2x^2}+\dfrac{h^3}{3x^3}-\dfrac{h^4}{4x^4}+\ldots}{h}$

$\dfrac{h}{x}$ is a common factor in each term of the infinite series. Take it common from all the terms in the numerator and then simplify the whole function.

$= \,\,\,$ $\displaystyle \large \lim_{h \,\to\, 0} \normalsize \dfrac{\dfrac{h}{x}\Bigg[1-\dfrac{h}{2x}+\dfrac{h^2}{3x^2}-\dfrac{h^3}{4x^3}+\ldots\Bigg]}{h}$

$= \,\,\,$ $\displaystyle \large \lim_{h \,\to\, 0} \normalsize \dfrac{h\Bigg[1-\dfrac{h}{2x}+\dfrac{h^2}{3x^2}-\dfrac{h^3}{4x^3}+\ldots\Bigg]}{hx}$

$= \,\,\,$ $\displaystyle \large \lim_{h \,\to\, 0} \normalsize \require{cancel} \dfrac{\cancel{h}\Bigg[1-\dfrac{h}{2x}+\dfrac{h^2}{3x^2}-\dfrac{h^3}{4x^3}+\ldots\Bigg]}{\cancel{h}x}$

$= \,\,\,$ $\displaystyle \large \lim_{h \,\to\, 0} \normalsize \dfrac{1-\dfrac{h}{2x}+\dfrac{h^2}{3x^2}-\dfrac{h^3}{4x^3}+\ldots}{x}$

Evaluate the function

Finally, find the value of the function as the limit $h$ approaches zero. It can be done by replacing $h$ by zero.

$= \,\,\,$ $\dfrac{1-\dfrac{(0)}{2x}+\dfrac{{(0)}^2}{3x^2}-\dfrac{{(0)}^3}{4x^3}+\ldots}{x}$

$= \,\,\,$ $\dfrac{1-0+0-0+\ldots}{x}$

$= \,\,\,$ $\dfrac{1}{x}$

Therefore, it is proved in calculus that the derivative of $\ln{x}$ with respect to $x$ is equal to $\dfrac{1}{x}$

$\,\,\, \therefore \,\,\,\,\,\, \dfrac{d}{dx}{\ln{x}}$ $\,=\,$ $\dfrac{1}{x}$

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved