Math Doubts

Constant multiple rule of Derivatives

Formula

$\dfrac{d}{dx}{\, \Big(k.f(x)\Big)} \,=\, k \times \dfrac{d}{dx}{\, f(x)}$

The derivative of product of a constant and a function is equal to the product of constant and the derivative of the function. This property of differentiation is called the constant multiple rule of derivatives.

Introduction

Let’s take $x$ is a variable, $k$ is a constant and $f(x)$ is a function in terms of $x$. If the constant $k$ is multiplied by the function $f(x)$, then the product of them is $k.f(x)$, which is called as the constant multiple function.

The derivative of the constant multiple function with respect to $x$ is written in mathematical form as follows.

$\dfrac{d}{dx}{\, \Big(k.f(x)\Big)}$

The differentiation of the constant multiple function with respect to $x$ is equal to the product of the constant $k$ and the derivative of the function $f(x)$.

$\implies$ $\dfrac{d}{dx}{\, \Big(k.f(x)\Big)} \,=\, k \times \dfrac{d}{dx}{\, f(x)}$

This property is called the constant multiple rule of differentiation and it is used as a formula in differential calculus.

Examples

Look at the following examples to understand the use of the constant multiple rule in differential calculus.

$(1) \,\,\,$ $\dfrac{d}{dx}{\, \Big(6x^2\Big)} \,=\, 6 \times \dfrac{d}{dx}{\, x^2}$

$(2) \,\,\,$ $\dfrac{d}{dy}{\, \Bigg(\dfrac{\log_{e}{y}}{4}\Bigg)} \,=\, \dfrac{1}{4} \times \dfrac{d}{dy}{\, \log_{e}{y}}$

$(3) \,\,\,$ $\dfrac{d}{dz}{\, \Big(-0.7\sin{3z}\Big)} \,=\, -0.7 \times \dfrac{d}{dx}{\, \sin{3z}}$

Proof

Learn how to derive the constant multiple rule in differential calculus.

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved