Math Doubts

Composite Limit rule

Formula

$\displaystyle \large \lim_{x \,\to\, a}{\normalsize f{\Big(g{(x)}\Big)}}$ $\,=\,$ $f{\Big(\displaystyle \large \lim_{x \,\to\, a}{\normalsize g{(x)}}}\Big)$

Introduction

Suppose $f(x)$ and $g(x)$ represent two functions in terms of $x$. The composition of them is expressed as $f{\Big(g{(x)}\Big)}$ in mathematics. In calculus, the limit of a composite function as $x$ approaches $a$ is written as follows.

$\displaystyle \large \lim_{x \,\to\, a}{\normalsize f{\Big(g{(x)}\Big)}}$

The limit of $f$ of $g$ of $x$ as $x$ closer to $a$ is equal to $f$ of the limit of $g$ of $x$ as $x$ tends to $a$.

$\implies$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize f{\Big(g{(x)}\Big)}}$ $\,=\,$ $f{\Big(\displaystyle \large \lim_{x \,\to\, a}{\normalsize g{(x)}}}\Big)$

This mathematical equation is called the composite limit rule and it is used to find the limit of a function, which is formed by the composition of two or more functions.

Example

Let’s verify the composite limit rule from the following understandable example problem.

Evaluate $\displaystyle \large \lim_{x \,\to\, 2}{\normalsize \cos{\big(x^2-4\big)}}$

Now, find the limit of the cosine of angle $x$ square minus $4$ as $x$ approaches $2$ by the direct substation.

$=\,\,\,$ $\cos{\big((2)^2-4\big)}$

$=\,\,\,$ $\cos{(4-4)}$

$=\,\,\,$ $\cos{(0)}$

$=\,\,\,$ $1$

Similarly, find the cosine of the limit of the function $x$ squared minus $4$ as $x$ closer to $2$ by the direct substitution method.

$=\,\,\,$ $\cos{\Big(\displaystyle \large \lim_{x \,\to\, 2}{\normalsize \big(x^2-4\big)\Big)}}$

$=\,\,\,$ $\cos{\Big(\big((2)^2-4\big)\Big)}$

$=\,\,\,$ $\cos{(4-4)}$

$=\,\,\,$ $\cos{(0)}$

$=\,\,\,$ $1$

$\,\,\,\therefore\,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 2}{\normalsize \cos{\big(x^2-4\big)}}$ $\,=\,$ $\cos{\Big(\displaystyle \large \lim_{x \,\to\, 2}{\normalsize \big(x^2-4\big)\Big)}}$ $\,=\,$ $1$

Proof

Learn how to derive the composition limit rule to find the limit rule of a composite function.

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved