Math Doubts

Proof of Chain Rule

Formula

$\dfrac{d}{dx} {f[{g(x)}]} \,=\, {f'[{g(x)}]}.{g'{(x)}}$

Let $f(x)$ and $g(x)$ be two functions in terms of $x$ and their composition formed a composite function, denoted by $f\Big(g(x)\Big)$. The derivative of $f\Big(g(x)\Big)$ with respect to $x$ is written mathematically as follows in calculus.

$\dfrac{d}{dx}\,f\Big(g(x)\Big)$

Proof

$f{(x)}$ is a function and $g{(x)}$ is another function. $f{(g{(x)})}$ is a composition of the both functions.

Representation of Derivatives of the functions

The differentiation of a function is represented in short form in calculus as follows. It is used in deriving the chain rule. So, remember them.

$(1) \,\,\,\,\,\,$ $\dfrac{d}{dx} f{(x)} \,=\, f'{(x)}$

$(2) \,\,\,\,\,\,$ $\dfrac{d}{dx} g{(x)} \,=\, g'{(x)}$

The derivative of function $f{[g{(x)}]}$ with respect to $x$ is written mathematically as follows.

$\dfrac{d}{dx}{f{[g{(x)}]}}$

Transform the function in known form

Generally, $f{(x)}$ is a known form of the function. So, try to convert the function $f{[g{(x)}]}$ to the known form for simplifying the complexity of the function.

Take $y = g{(x)}$. Therefore, the function $f{[g{(x)}]}$ can be simplify written as $f{(y)}$.

$\implies \dfrac{d}{dx}{f{[g{(x)}]}}$ $\,=\,$ $\dfrac{d}{dx}{f{(y)}}$

Change the differential element

The function $f{(y)}$ is in terms of $y$ but the differential element is in terms of $x$. It is not possible to differentiate the function $f{(y)}$ with respect to $x$. Therefore, convert the differential element ($dx$) from $x$ to $y$.

It is possible by differentiating $y = g{(x)}$ with respect to $x$.

$\dfrac{d}{dx}{y} \,=\, \dfrac{d}{dx}{g{(x)}}$

$\implies \dfrac{dy}{dx} \,=\, g'{(x)}$

$\implies \dfrac{dy}{g'{(x)}} \,=\, dx$

$\,\,\, \therefore \,\,\,\,\,\, dx \,=\, \dfrac{dy}{g'{(x)}}$

Now, replace the differential element from $x$ to $y$ term.

$\implies \dfrac{d}{dx}{f{[g{(x)}]}}$ $\,=\,$ $\dfrac{d}{\dfrac{dy}{g'{(x)}}}{f{(y)}}$

The function $g'{(x)}$ divides the differential element $dy$. So, it multiplies $d$ in numerator.

$\implies \dfrac{d}{dx}{f{[g{(x)}]}}$ $\,=\,$ $\dfrac{g'{(x)} \times d}{dy}{f{(y)}}$

$\implies \dfrac{d}{dx}{f{[g{(x)}]}}$ $\,=\,$ $g'{(x)} \dfrac{d}{dy}{f{(y)}}$

$\implies \dfrac{d}{dx}{f{[g{(x)}]}}$ $\,=\,$ $g'{(x)} f'{(y)}$

Get the Chain Rule

Now, replace the value of $y$. Actually, it is $y = g{(x)}$. Therefore, replace $y$ by its value in the composition of the functions.

$\implies \dfrac{d}{dx}{f{[g{(x)}]}}$ $\,=\,$ $g'{(x)} f'{[{g{(x)}}]}$

$\,\,\, \therefore \,\,\,\,\,\, \dfrac{d}{dx}{f{[g{(x)}]}}$ $\,=\,$ $f'{[{g{(x)}}]}g'{(x)}$

This property is called as chain rule in differential calculus and it is used as a formula while dealing the functions which are formed compositions of two or more functions.

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved