A differentiable function whose derivative is equal to the original function, is called an antiderivative of a function. The antiderivative of a function is also called as a primitive of a function.
$f{(x)}$ is a function and $p{(x)}$ is a differentiable function. Assume, the derivative of a function $p{(x)}$ is equal to $f{(x)}$ and $C$ is a constant.
$\dfrac{d}{dx}{\Big(p{(x)}+C\Big)}$ $\,=\,$ $f{(x)}$
$\implies$ $p'{(x)} \,=\, f{(x)}$
The function $p{(x)}$ is called an antiderivative of function $f{(x)}$.
$\dfrac{x^3}{3}$ is a function and $x^2$ is another function. Now, differentiate the function $\dfrac{x^3}{3}$ with a constant.
$\dfrac{d}{dx}{\Big(\dfrac{x^3}{3}+C\Big)}$ $\,=\,$ $\dfrac{d}{dx}{\dfrac{x^3}{3}}+\dfrac{d}{dx}{\,C}$
$\implies$ $\dfrac{d}{dx}{\Big(\dfrac{x^3}{3}+C\Big)}$ $\,=\,$ $\dfrac{1}{3} \times \dfrac{d}{dx}{x^3}+0$
$\implies$ $\dfrac{d}{dx}{\Big(\dfrac{x^3}{3}+C\Big)}$ $\,=\,$ $\dfrac{1}{3} \times 3x^{3-1}$
$\implies$ $\dfrac{d}{dx}{\Big(\dfrac{x^3}{3}+C\Big)}$ $\,=\,$ $\dfrac{1}{3} \times 3x^2$
$\implies$ $\dfrac{d}{dx}{\Big(\dfrac{x^3}{3}+C\Big)}$ $\,=\,$ $\dfrac{3x^2}{3}$
$\implies$ $\dfrac{d}{dx}{\Big(\dfrac{x^3}{3}+C\Big)}$ $\,=\,$ $\require{cancel} \dfrac{\cancel{3}x^2}{\cancel{3}}$
$\,\,\, \therefore \,\,\,\,\,\,$ $\dfrac{d}{dx}{\Big(\dfrac{x^3}{3}+C\Big)}$ $\,=\,$ $x^2$
Therefore, the function $\dfrac{x^3}{3}$ is called a primitive or antiderivative of the function $x^2$.
A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.
Copyright © 2012 - 2023 Math Doubts, All Rights Reserved