Math Doubts

How to prove the $a^2-b^2$ formula in Algebraic Method

Formula

$a^2-b^2 \,=\, (a+b)(a-b)$

The algebraic expression $a^2-b^2$ represents the difference of the two square quantities. It can be expressed in factoring form as the product of two special binomials $a+b$ and $a-b$. The factoring form of the difference of squares can be derived in mathematics algebraically according to factorization.

Difference of squares in Algebraic form

$a$ and $b$ represent two terms and the difference of squares of them is written as $a^2-b^2$ in mathematics.

A small Adjustment for factoring

A small adjustment is required to factor the difference of the two squares. It can be achieved by adding and subtracting a term $ab$ in the right-hand side of the algebraic equation.

$\implies$ $a^2-b^2$ $\,=\,$ $a^2-b^2-ab+ab$

$\implies$ $a^2-b^2$ $\,=\,$ $a^2-ab+ab-b^2$

Factorize the algebraic expression

$\implies$ $a^2-b^2$ $\,=\,$ $a^2-ab+ab-b^2$

The right-hand side of the equation can be factored by the factorisation method. $a$ is a common factor in the first two terms and $b$ is a common factor in the last two terms. So, they can be factored.

$\implies$ $a^2-b^2$ $\,=\,$ $a(a-b)+b(a-b)$

Now, $a-b$ is a common factor in the both terms of the right-hand side of the equation.

$\implies$ $a^2-b^2$ $\,=\,$ $(a-b)(a+b)$

$\,\,\, \therefore \,\,\,\,\,\,$ $a^2-b^2$ $\,=\,$ $(a+b)(a-b)$

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved